Answer:
Force exerted by the air on the propellers = 46000 - 9200
= 36800 N
Hope this helps!
Using the equation v(avg)=distance/time
and the equation v=v(original)+a(t)
solve for acceleration
2600=0+a(12)
a=216.66666 m/s^2
Then, you use the equation
v^2=v(original)+2a*(change in x)
2600^2=2(216.666666)*change in x
6760000/2/216.666666 = 15600 meters which is the length of the race
Then using v(avg)=x/t
15600/12= 1300 m/s
Answer:
F = 2.6692 x 10⁻⁹ N
Explanation:
Given,
The mass of the rock, m = 10 kg
The mass of the boulder, M = 100 kg
The distance between them, d = 5 m
The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula
<em> F = GMm/d² newton</em>
Where,
G - Universal gravitational constant
Substituting the given values,
F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²
F = 2.6692 X 10⁻⁹ N
Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N
Answer:
v = 66 m/s
Explanation:
Given that,
The initial velocity of a car, u = 0
Acceleration of the car, a = 11 m/s²
We need to find the final velocity of the toy after 6 seconds.
Let v is the final velocity. It can be calculated using first equation of motion. It is given by :
v = u +at
v = 0 + 11 m/s² × 6 s
v = 66 m/s
So, the final velocity of the car is 66 m/s.