In fresh water sound waves travel at 1497m/s at 25 degrees, I'll assume that's the characteristics of the water.
If it's 0.01s then you need to divide the speed by 100 to get the, 14.97, however it gets there and back in that time so you need to halve it.
<u>7.485m</u>
Answer:
0.23 J
Explanation:
k*(36 - 28) = 23
so k = 23/8 N/cm
W = k(32 - 28)²/2 = 23/8 * 4²/2 = 23 N-cm = 0.23 J
The fast lap is irrelevant to the question, because it didn't happen
until after the 9 laps that you're interested in.
To be perfectly technical about it, we don't actually have enough
information to answer the question. You told us her average speed
for 10 laps, but we don't know anything about how her speed may
have changed during the whole 10 laps. For all we know, maybe
she took a nap first, and then got up and drove 10 laps at the speed
of 125 metres per second. That would produce the average speed
of 12.5 metres per second and we would never know it Why not ?
That's only 280 miles per hour. Bikes can do that, can't they ?
IF we can assume that Amy maintained a totally steady pace through
the entire 10 laps, then we could say that her average for 9 laps was
also 12.5 metres per second.
Answer:
False
Explanation:
<em>If one of the bulbs is removed from the series, the other bulb will not come on at all.</em>
This is because the removal of one of the bulbs would interrupt the flow of current though the entire circuit.
Hence, that the other one will get brighter if one of two bulbs in a circuit is removed from its socket is not true.
Answer:
Negative
Explanation:
The respiratory plays a remarkable role in the regulation of CO2. It is responsible for gas exchange. The body gets rid of CO2 by breathing out. The goal of respiration is to decrease the CO2 levels.