Answer:
B = 2.5 10⁸ Pa
Explanation:
The volume modulus is defined by
B =
The negative fate is for the module to be positive since the volume change is negative
It is not necessary to reduce the volumes to the SI system, since they are both in the same units
B =
=
B = 2.5 10⁸ Pa
Answer:
1- b: 2- a : 3- c : 4- d
Explanation:
it starts 2 move away from strting point, then no motion, then moves toward the start, the slows up.
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
Answer:
(a) 0.3778 eV
(b) Ratio = 0.0278
Explanation:
The Bohr's formula for the calculation of the energy of the electron in nth orbit is:

(a) The energy of the electron in n= 6 excited state is:


Ionisation energy is the amount of this energy required to remove the electron. Thus, |E| = 0.3778 eV
(b) For first orbit energy is:




Ratio = 0.0278
Answer:
x = 5.79 m
Explanation:
given,
mass of the car = 39000 Kg
spring constant = 5.7 x 10⁵ N/m
acceleration due to gravity = 9.8 m/s²
height of the track = 25 m
length of spring compressed = ?
using conservation of energy
potential energy is converted into spring energy




x = 5.79 m
the spring is compressed to x = 5.79 m to stop the car.