Answer:
both will be at liquid state. the particles will move rapidly in all directions and will collide with other particles in random motion
ANS: density = 13.41 g/ml
Density (d) of a substance is the mass (m) occupied by it in a given volume (v).
Density = mass/volume
i.e. d = m/v
m = (d) v -----(1)
The given equation from the plot of weight vs volume is :
y = 13.41 x ----(2)
Based on equations (1) and (2) we can deduce that the density of the metal is 13.41 g/ml
Based on the chemical equation, to balance the equation we use 2 as a coefficients of HCl on left hand side of reaction.
<h3>What is balanced equation?</h3>
Balanced chemical equations are those equation in which each entities are present in same amount on left side as well as on the right side of the chemical reaction.
Given chemical reaction is:
Zn + HCl → ZnCl₂ + H₂
Above reaction is not balanced equation as number of chlorine and hydrogen atoms are not same, so balanced equation will be:
Zn + 2HCl → ZnCl₂ + H₂
Hence we add 2 as a coefficient of HCl to balance the equation.
To know more about balance equation, visit the below link:
brainly.com/question/26694427
Answer:
pH = 13.1
Explanation:
Hello there!
In this case, according to the given information, we can set up the following equation:

Thus, since there is 1:1 mole ratio of HCl to KOH, we can find the reacting moles as follows:

Thus, since there are less moles of HCl, we calculate the remaining moles of KOH as follows:

And the resulting concentration of KOH and OH ions as this is a strong base:
![[KOH]=[OH^-]=\frac{0.00576mol}{0.012L+0.032L}=0.131M](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E-%5D%3D%5Cfrac%7B0.00576mol%7D%7B0.012L%2B0.032L%7D%3D0.131M)
And the resulting pH is:

Regards!
Glaciers capture large amount of carbon dioxide from atmosphere. When concentration of carbon dioxide molecules in glaciers increase, then strength and fracture toughness of ice are decreased and <span>that make glaciers vulnerable to cracking and splitting into fragments.
</span>That is because hydrogen bonds between water molecules in glaciers is decreased under increasing concentrations of carbon dioxide who <span>competes with the water molecules connected in the ice crystal.</span>