Answer:
The height of the plant is controlled by two alleles - the dominant 'T' for tallness and recessive 't' for shortness of the plant. The dominant allele represses the expression of the recessive allele. The recessive allele is expressed only in the homozygous state (tt)
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
Answer:

Explanation:
Chemical Equations are representations of chemical reactions in terms of the symbols and formulae of the elements and compounds involved. A chemical equation usually have the reactant at the left hand side while the product is on the right hand side.
A chemical Equation is of little or no value if is not in balanced equation. When an equation is balanced , the total number of atoms of any element on the left-hand side of it must be equal to the total number of atoms of that element on the right hand side.
in the given question; we are given a word problem of chemical symbol to compute and also to balance the chemical equation.
From below; the chemical equation can be written as:

From the above equation we will notice that it is not truly balanced ; so th balanced equation can be written as:

A 20 L sample of the gas contains 8.3 mol N₂.
According to <em>Avogadro’s Law,</em> if <em>p</em> and <em>T</em> are constant
<em>V</em>₂/<em>V</em>₁ = <em>n</em>₂/<em>n</em>₁
<em>n</em>₂ = <em>n</em>₁ × <em>V</em>₂/<em>V</em>₁
___________
<em>n</em>₁ = 0.5 mol; <em>V</em>₁ = 1.2 L
<em>n</em>₂ = ?; <em>V</em>₂ = 20 L
∴<em>n</em>₂ = 0.5 mol × (20 L/1.2 L) = 8.3 mol
Answer:
7
Explanation:
The mass number is neutrons plus protons