Answer:
13mL
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above, we obtained the following data:
Mole ratio of the acid (nA) = 1
Mole ratio of the base (nB) = 1
Step 2:
Data obtained from the question.
This includes the following:
Molarity of the acid (Ma) = 6M
Volume of the acid (Va) =?
Volume of the base (Vb) = 39mL
Molarity of the base (Mb) = 2M
Step 3:
Determination of the volume of the acid.
Using the equation:
MaVa/MbVb = nA/nB, the volume of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
6 x Va / 2 x 39 = 1/1
Cross multiply to express in linear form
6 x Va = 2 x 39
Divide both side by 6
Va = (2 x 39)/6
Va = 13mL
Therefore, the volume of the acid (HNO3) needed for the reaction is 13mL
Mix milk with chocolate syrup or powder.
Answer: all elements in the periodic table is classified as elements
Explanation:
The structure of the table shows periodic trends. The seven rows of the table, called periods, generally have metals on the left and nonmetals on the right. The columns, called groups, contain elements with similar chemical behaviours. Six groups have accepted names as well as assigned numbers: for example, group 17 elements are the halogens; and group 18 are the noble gases
Answer:
B.) 129.9 grams
Explanation:
To find the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
The specific heat of copper is 0.385 J/g°C. Knowing this, you can plug the given values into the equation and simplify to isolate "m".
Q = mcΔT <----- Equation
5000 J = m(0.385 J/g°C)(200 °C - 100 °C) <----- Insert values
5000 J = m(0.385 J/g°C)(100) <----- Subtract
5000 J = m(38.5) <----- Multiply 0.385 and 100
129.9 = m <----- Divide both sides by 38.5
Answer:
28
Explanation:
electron = atomic number - charge(if the charge is positive and addition if the charge is negative)
electron = 30 - 2
electron = 28