Answer:
0.29713 m/s
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
v = Velocity
r = Radius = 18 mm
By balancing the forces in the system we have
The velocity of the coaster is 0.29713 m/s
Answer: In this lab we wanted to know how motion can be described. So the hypothesis is if the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration. My prediction is that cars travel faster on higher tracts. So the heighten the track was intentionally manipulated. So it is the independent variable the speed of the car is the dependent variable. The speed at the first quarter checkpoint is 1.09 m/s. The speed at the second quarter checkpoint is 1.95 m/s. The speed at the third quarter checkpoint is 2.373.36 m/s. The speed at the finish line is 2.803.00 m/s. The average speed increases as the height increases.
The cars on the higher track travel farther than the cars on the lower track, in the same time.
This means that the cars on the higher track have a greater average speed than those on the lower track. This is demonstrated by the
slope of the higher track line being greater than the slope of the lower track line.
Explanation: put it in notes then send it to files to compress it to submit it.
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is , where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W =
=
=
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Answer:
P.E. = -0.449 J
Explanation:
Potential energy of a charge particle in any electrostatic field is defined as the amount of work done ( in negative ) to bring that charge particle from any position to a new position r.
Now Potential energy is defined by this formula,
P.E. = k q₁ q₂/ r
where P.E. is the potential energy.
k = 1/( 4πε₀) = 8.99 × 10⁹ C²/ ( Nm²)
q₁ = charge of one particle = +1.0μC
q₂ = charge of another particle = -5.0μC
r = distance = 0.1 m
Now , P.E. = 8.99 × 10⁹C²/ ( Nm²) * ( -5.0 × 10⁻⁶ C ) × ( 1 × 10⁻⁶ C ) / 0.1 m
P.E. = -0.449 J
Answer:
The acceleration is -9.8 m/s²
Explanation:
Hi there!!
When you throw a ball upward, there is a downward acceleration that makes the ball return to your hand. This acceleration is produced by gravity.
The average acceleration is calculated as the variation of the speed over time. In this case, we know the time and the initial and final speed. Then:
acceleration = final speed - initial speed/ elapsed time
acceleration = -4.3 m/s - 4.3 m/s / 0.88 s
acceleration = -9.8 m/s²