(4) a metal sphere with a charge of 1.0 × 10^−9 C <span>moved through a potential difference of 4.0 V would undergo the greatest change in electrical energy from the list. </span>
Answer:
Explanation:
Ball is thrown downward:
initial velocity, u = - 20 m/s (downward)
height, h = - 60 m
Acceleration due to gravity, g = - 9.8 m/s^2 (downward)
(a) Let the speed of the ball as it hits the ground is v.
Use third equation of motion


v = 39.69 m/s
(b) Let t be the time taken
Use First equation of motion
v = u + a t
- 39.69 = - 20 - 9.8 t
t = 2 second
Now the ball is thrown upwards:
initial velocity, u = 20 m/s (upward)
height, h = - 60 m
Acceleration due to gravity, g = - 9.8 m/s^2 (downward)
(c) Let the speed of the ball as it hits the ground is v.
Use third equation of motion


v = 39.69 m/s
(d) Let t be the time taken
Use First equation of motion
v = u + a t
- 39.69 = + 20 - 9.8 t
t = 6.09 second
Answer:
ExplanaThis is a way of measuring how much gravity there is. The formula is: weight/mass = gravitational field strength.
Gravitational field strength = Weight/mass unit is N/kg
Weight = mass x gravitational field strength unit is N
On Earth the gravitational field strength is 10 N/kg. Other planets have different gravitational field strengths. The Moon has a gravitational field strength of 1.6 N/kg. You might have seen films of astronauts leaping high on the moon.
Here on Earth, if I jump I am pulled back to ground by gravity. What is my weight? My mass is 80kg and if we multiply by gravitational field strength (10N/kg) - my weight is 800N. Now if I go to the moon, my mass will be the same, 80kg. We multiply that by the moon's gravitational field strength, which is 1.6 N/ kg. That means my weight on the moon is 128N. So I have different weights on the Earth and on the Moon. That's why astronauts can jump high into the air on the moon - they're lighter up there.
Jupiter is a very large planet with strong gravitational field strength of 25 N/ kg. My body is 80kg. If I go to Jupiter my weight is going to be 25 x 80 = 2,000 N. That means I wouldn't be able to get off the ground or stand up straight! I would probably be lying down all the time there. So weight varies depending on which planet you are on. You can find out more yourself by looking up tables of weight on different planets.tion:
pls brainlieste
Part A:
Acceleration can be calculated by dividing the difference of the initial and final velocities by the given time. That is,
a = (Vf - Vi) / t
where a is acceleration,
Vf is final velocity,
Vi is initial velocity, and
t is time
Substituting,
a = (9 m/s - 0 m/s) / 3 s = 3 m/s²
<em>ANSWER: 3 m/s²</em>
Part B:
From Newton's second law of motion, the net force is equal to the product of the mass and acceleration,
F = m x a
where F is force,
m is mass, and
a is acceleration
Substituting,
F = (80 kg) x (3 m/s²) = 240 kg m/s² = 240 N
<em>ANSWER: 240 N </em>
Part C:
The distance that the sprinter travel is calculated through the equation,
d = V₀t + 0.5at²
Substituting,
d = (0 m/s)(3 s) + 0.5(3 m/s²)(3 s)²
d = 13.5 m
<em>ANSWER: d = 13.5 m</em>
Answer:
It is b
Explanation:
The question tells you that the distance was increased 3 times the original distance, which means it was moved 3 times