King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1
Answer:
b
Explanation:
Brownian motion is the random movement of particles in a fluid due to their collisions with other atoms or molecules. ... Brownian motion takes its name from the Scottish botanist Robert Brown, who observed pollen grains moving randomly in water. He described the motion in 1827 but was unable to explain it.
Answer:
C. water is more dense and viscous
Explanation:
Rapid gas exchange can be accomplished more easily in air than in water because water is more dense and viscous.
Gases have the greatest ease of diffusion of their respective particles, as occurs in air, since their molecules have higher speeds and have more distance from each other than liquids.
The molecular diffusion rate in liquids is much less than in gases. The molecules of a liquid are very close (liquids are more dense and viscous) to each other compared to those of a gas, then the gas molecules hits with the molecules of the liquid with more frequency and this causes that the gas moves slower than in other gas (for example in air).