The product of speed and time is distance. To calculate the total distance you multiple the speed in kilometers per second by the time at that speed in seconds, do this for all 3 different speeds then add them up, the 17.4 minutes eating does not affect the answer at all. to convert from minutes to seconds multiply time in minutes by 60, to convert from km/h to km/s divide km/h by 3600.
(23.5x60)x(74.5/3600) = 29.2km (rounded to 1 decimal place)
+
(15.9x60)x(111/3600) = 29.4km (rounded to 1 decimal place)
+
(49.2x60)x(38.7/3600) = 31.7km
=90.3km
The brackets are not necessary but i think it makes it more clear what is happening in your working.
Answer:
The tension in the string is
.
Explanation:
For a string with tension
and linear density
carrying a transverse wave at speed
it is true that

solving for
we get:

Now, the transverse wave covers the distance of 7.4mm in 0.88s, which means it's speed is

And it's linear density (mass per unit length) is

Therefore, the tension in the cord is

or in micro newtons

Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star
Answer:
broken pieces of glass from a window can't form a shadow.
Explanation:
the reason is that shadow is formed only when light rays hits an opaque object, which doesn't let light to pass through it, but glass is a transparent object, hence light rays passes through it forming no shadow..
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
M V = m v conservation of momentum (Caps-cannon Small-projectile)
V = m / M * V = 2 / 2000 * 200 m/s = .2 m/s recoil velocity of cannon
KE = 1/2 M V^2 = 2000 / 2 kg * (.2 m/s)^2 = 40 kg m^2/s^2 = 40 J