To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So


Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,



Therefore the tension force in the cable is 10290.15N
Answer:
Showing results for Two point charge q, separated by 1.5cm have change value of +2.0 and -4.0AND/C respectively what is the magnitude of the Electric force midway between them?
Search instead for Two point charge q, seperated by 1.5cm have change value of +2.0 and -4.0N/C respectively what is the magnitude of the Electric force midway between them?
Answer:
Explanation:
The seven factors are work load, family life, transportation, compensation policy and benefits, colleagues and supervisor, working environment and working condition and career growth.
Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Answer:
v = 5.9 x 10⁷ m/s
Explanation:
The kinetic energy of the electron in terms of potential difference is given as:
--------------- equation (1)
where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
V = Potential Difference = 9.9 KV = 9900 Volts
The kinetic energy in general is given as:
--------- equation (2)
where,
m = mass of electron = 9.1 x 10⁻³¹ kg
v = speed of electron = ?
Therefore, comparing equation (1) and equation (2), we get:

<u>v = 5.9 x 10⁷ m/s</u>