1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
3 years ago
7

An open rectangular tank 1 m wide and 2 m long contains gasoline to a depth of 1 m. If the height of the tank sides is 1.5 m, wh

at is the maximum horizontal acceleration (along the long axis of the tank) that can develop before the gasoline would begin to spill?
Physics
1 answer:
lara [203]3 years ago
3 0

Answer:

a_y = 4.9\ m/s^2

Explanation:

Given,

Width of rectangular tank, b = 1 m

Length of the tank, l = 2 m

height of the tank, d = 1.5 m

Depth of gasoline on the tank, h = 1 m

\dfrac{dz}{dy}=-\dfrac{1.5-1}{1}

\dfrac{dz}{dy}=-0.5

The differential form with the acceleration

\dfrac{dz}{dy}=\dfrac{-a_y}{a_z + g}

-0.5=-\dfrac{a_y}{a_z + g}

acceleration in z-direction = 0 m/s²

g = 9.8 m/s²

a_y is the horizontal acceleration of the gasoline.

0.5=\dfrac{a_y}{0 + 9.8}

a_y = 9.8\times 0.5

a_y = 4.9\ m/s^2

Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²

You might be interested in
What are the benefits and drawbacks of using renewable energy sources to generate electricity?
Luden [163]

Answer:

benefits

Diversifying energy supply and reducing dependence on imported fuels.

Creating economic development and jobs in manufacturing, installation, and more.

drawbacks

Large areas of landfill are required

Hydroelectric power is generated from flowing water, which turns turbines and generates electricity

Explanation:

8 0
3 years ago
10. A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a transition to the n = 5 excited state.
Xelga [282]

Answer:

\lambda=1282\ nm

Explanation:

E_n=-2.179\times 10^{-18}\times \frac{1}{n^2}\ Joules

For transitions:

Energy\ Difference,\ \Delta E= E_f-E_i =-2.179\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J

\Delta E=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J

Also, \Delta E=\frac {h\times c}{\lambda}

Where,  

h is Plank's constant having value 6.626\times 10^{-34}\ Js

c is the speed of light having value 3\times 10^8\ m/s

So,  

\frac {h\times c}{\lambda}=2.179\times 10^{-18}(|\frac{1}{n_i^2} - \dfrac{1}{n_f^2}|)\ J

\lambda=\frac {6.626\times 10^{-34}\times 3\times 10^8}{{2.179\times 10^{-18}}\times (|\frac{1}{n_i^2} - \dfrac{1}{n_f^2}|)}\ m

So,  

\lambda=\frac {6.626\times 10^{-34}\times 3\times 10^8}{{2.179\times 10^{-18}}\times (|\frac{1}{n_i^2} - \dfrac{1}{n_f^2}|)}\ m

Given, n_i=5\ and\ n_f=3

\lambda=\frac{6.626\times 10^{-34}\times 3\times 10^8}{{2.179\times 10^{-18}}\times (\frac{1}{5^2} - \dfrac{1}{3^2})}\ m

\lambda=\frac{10^{-26}\times \:19.878}{10^{-18}\times \:2.179\left(|\frac{1}{25}-\frac{1}{9}\right)|}\ m

\lambda=\frac{19.878}{10^8\times \:2.179\left(|-\frac{16}{225}\right|)}\ m

\lambda= 1.2828\times10^{-6}

1 m = 10⁻⁹ nm

\lambda=1282\ nm

6 0
3 years ago
A box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is
maksim [4K]
D = v^2 / 2ug

d=  3.5^2 / 0,15 x 9.8 m/s^2

the answer should be around 4.2m

hope this helps
8 0
3 years ago
Why cant your rocket could never reach the speed of light?
Oksanka [162]

Answer:

The length of the object would shrink to zero which is not possible.

Explanation:

A rocket or any body cannot reach the speed of light because according to theory of relativity the and the Lorentz factor the length of the object would shrink to zero and the time dilation for that body would be infinite.

The Lorentz factor is given as:

\gamma=\frac{1}{\sqrt{\frac{v^2}{c^2} } }

where:

v = speed of the moving object

c = speed of light

4 0
3 years ago
A uniform electric field is directed parallel to the +y axis. If a positive test charge begins at the origin and moves upward al
lukranit [14]

Answer: option 1 : the electric potential will decrease with an increase in y

Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below

V = kq/y

Where k = 1/4πε0

Where V = electric potential,

k = electric constant = 9×10^9,

y = distance of potential relative to a reference point, ε0 = permittivity of free space

q = magnitude of electronic charge = 1.609×10^-19 c

From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.

We have that

V = k/y

We see the potential(V) is inversely proportional to distance (y).

This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.

This fact makes option 1 the correct answer

3 0
3 years ago
Other questions:
  • the kinetic energy of a bowling ball is 25 (kg-m^2/sec^2). if the mass is 2 kg, the what is the speed of the bowling ball
    7·1 answer
  • Acid rain falling on a rock outcrop over a period of many years can cause the rock on the service to dissolve. this is an exampl
    6·1 answer
  • A kid throws a ball from a tower 45 meters tall how fast is the ball going when it hits the ground?
    12·1 answer
  • Two runners start a race. After 2 seconds, they both have the same velocity. If they both started at the same time, how do their
    10·2 answers
  • · An object’s inertia is directly proportional to its _____________
    10·1 answer
  • The period of a sound wave is 0.002 seconds. The speed of sound is 344 m/s. whats the frequency
    15·1 answer
  • Emma is working in a shoe test lab measuring the coefficient of friction for tennis shoes on a variety of surfaces. The shoes ar
    10·1 answer
  • A train is moving west with an initial velocity of 20m/s accelerates at 4m/s for 10 seconds during this time the train moves a d
    9·1 answer
  • A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the
    6·1 answer
  • The density of ice is 0.92 g/cm 3 . An ice sculptor orders a one cubic meter block of ice. What is the mass of the block? Hint:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!