Answer:
331.7m/s
Explanation:
Given parameters:
Initial velocity = 100m/s
Acceleration = 50m/s²
Distance = 1km = 1000m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we have to apply the right motion equation shown below;
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
Now insert the parameters and solve;
v² = 100² + (2 x 50 x 1000)
v² = 110000
v = √110000 = 331.7m/s
Answer:
The statement is true: velocity and acceleration have opposite directions in the interval of braking.
Explanation:
Let's say we have a velocity
.
The acceleration
is the rate of change of the velocity
. This means that if
is <em>increasing during</em> time, then
must be positive. But if
is <em>decreasing over</em> time, then
will be negative (even though the velocity is positive).
Mathematically:

decreases ⇒
⇒
.
Example:

Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not, say, 12 e, or −3.8 e, etc.
Answer:
The magnitude of each force is 2.45 x 10⁻¹⁶ N
Explanation:
The charge of proton, +q = 1.603 x 10⁻¹⁹ C
The charge of electron, -q = 1.603 x 10⁻¹⁹ C
Distance between the two charges, r = 971 nm = 971 x 10⁻⁹ m
Apply Coulomb's law;

where;
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²
q₁ and q₂ are the charges of proton and electron respectively
F is the magnitude of force between them
Substitute in the given values and solve for F

Therefore, the magnitude of each force is 2.45 x 10⁻¹⁶ N