Normal force is the force exerted when an object is on an surface. So an example could be a pile of books on top of a table.
The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
Choice-'b' says the formula for kinetic energy in words.
KE = (1/2) · (M) · (S²)
The springs stored energy is transferred to the cube as kinetic energy and then by the slop the KE is converted to height energy.
<span>0.5 . k . x^2 = 0.5 . m . v^2 = m . g . ∆h </span>
<span>0.5 . 50 . (0.1^2) = 0.05 . 9.8 . ∆h </span>
<span>∆h = 0.51 m = 51 cm </span>
<span>This is the height gained </span>
<span>Distance along the slope = ∆h / sin 60 = 0.589 = 59 cm </span>
<span>In the second case, the stored spring energy is converted into height energy AND frictional heat energy. </span>
<span>The height energy is m . g . d sin 60 where d is the distance the cube moves along the slope. </span>
<span>The Frictional energy converted is F . d </span>
<span>F ( the frictional force ) = µ . N </span>
<span>N ( the reaction to the component of the gravity force perpendicular to the surface of the slope ) = m . g . cos60 </span>
<span>Total energy converted </span>
<span>0.5 . k . x^2 = (m . g . dsin60) + (µ . m . g . cos60 . d ) </span>
<span>Solve for d </span>
<span>d = 0.528 = 53 cm</span>
Gravity adds 9.8 m/s to the speed of a falling object every second.
An object dropped from 'rest' (v = 0) reaches the speed of 78.4 m/s after falling for (78.4 / 9.8) = <em>8.0 seconds</em> .
<u>Note:</u>
In order to test this, you'd have to drop the object from a really high cell- tower, building, or helicopter. After falling for 8 seconds and reaching a speed of 78.4 m/s, it has fallen 313.6 meters (1,029 feet) straight down.
The flat roof of the Aon Center . . . the 3rd highest building in Chicago, where I used to work when it was the Amoco Corporation Building . . . is 1,076 feet above the street.