<u>Answer:</u> The wavelength of spectral line is 656 nm
<u>Explanation:</u>
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Final energy level = 2
= Initial energy level = 3
Putting the values in above equation, we get:

Converting this into nanometers, we use the conversion factor:

So, 
Hence, the wavelength of spectral line is 656 nm
1 mol = 6.02 * 10^23 atoms of carbon
x mol = 1.45 * 10^24 atoms of carbon
1/x =6.02*10^23 / 1.45 * 10^24
6.02 * 10^23 x = 1.45 * 10^24
x = 1.45 * 10^24 / 6.02 * 10^23
x = 2.41 mols of carbon
Without solving for the dipole moment, we can easily determine which among the common gases has the smallest dipole moment just by determining the differences in their electronegativity. The greater the difference in the electronegativity, the higher is the value of the dipole moment.
From the given above, there are obvious differences between the electronegativity between the atoms composing LiF, ClF, and HF. For Cl2, since this is the same molecule then, the difference in the electronegativity is zero.
Answer: Cl2.
The balanced chemical reaction is
<span>2al + 3cl2 = 2alcl3
To determine the maximum amount of product, we need to determine which is the limiting reactant. Then, use the initial amount of that reactant to calculate the amount of the product that would be produced. We do as follows:
7 mol Al (3 mol Cl2 / 2 mol Al) = 10.5 mol Cl2
8 mol Cl2 ( 2 mol Al / 3 mol Cl2) = 5.3 mol Al
Thus, it is Cl2 that is the limiting reactant.
8 mol Cl2 ( 2 mol AlCl3 / 3 mol Cl2) = 5.3 moles of AlCl3 is produced</span>
Answer:
The metals are to the left of the line (except for hydrogen, which is a nonmetal), the nonmetals are to the right of the line, and the elements immediately adjacent to the line are the metalloids.