Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

Answer:
Explanation:
E = (hc)/(λ)
E = (6.624x10^(-27))Js x ((3×10^8)ms^(-1)) /
(77.8x10^(-9)m)
E = 2.55 x 10^(-11) J
Answer:

Explanation:
In this case, we can start with the <u>formula of Platinum (II) Chloride</u>. The cation is the atom at the left of the name (in this case
) and the anion is the atom at the right of the name (in this case
). With this in mind, the <u>formula would be</u>
.
Now, if we used <u>metallic copper</u> we have to put in the reaction only the <u>copper atom symbol</u>
. So, we have as reagents:

The question now is: <u>What would be the products?</u> To answer this, we have to remember <u>"single displacement reactions"</u>. With a general reaction:

With this in mind, the reaction would be:

I hope it helps!
Answer:
There are
4.517
⋅
10
23
atoms of Zn in 0.750 mols of Zn.
Explanation:
Since we know that there are
6.022
⋅
10
23
atoms in every mole of a substance (Avogadro's Number), there are
6.022
E
23
⋅
0.750
atoms of Zn in 0.750 mols of Zn.
Answer:
Copper(II) nitrate and potassium hydroxide are soluble ionic compounds, which implies that they dissociate completely when dissolved in water to produce ions. ... You can thus say that the balanced chemical equation that describes this double ... Cu(NO3)2(aq)+2KOH(aq)→Cu(OH)2(s)⏐⏐↓+2KNO3(aq).