Your answer is B. 6.02 x 1023 grams
Answer:
Alkali metals are soft and have low melting points.
There are 1.92 × 10^23 atoms Mo in the cylinder.
<em>Step 1</em>. Calculate the <em>mass of the cylinder
</em>
Mass = 22.0 mL × (8.20 g/1 mL) = 180.4 g
<em>Step 2</em>. Calculate the<em> mass of Mo
</em>
Mass of Mo = 180.4 g alloy × (17.0 g Mo/100 g alloy) = 30.67 g Mo
<em>Step 3</em>. Convert <em>grams of Mo</em> to <em>moles of Mo
</em>
Moles of Mo = 30.67 g Mo × (1 mol Mo/95.95 g Mo) = 0.3196 mol Mo
<em>Step 4</em>. Convert <em>moles of M</em>o to <em>atoms of Mo
</em>
Atoms of Mo = 0.3196 mol Mo × (6.022 × 10^2<em>3</em> atoms Mo)/(1 mol Mo)
= 1.92 × 10^23 atoms Mo
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
Answer: options B,D and F
Explanation:
Since redox reactions are those which involves both oxidation and reduction
In B , Cu is oxidized and S gets reduced
D, Na gets oxidized and hydrogen gets reduced
F, carbon gets oxidized and Oxygen gets reduced
In g, there is no change in oxidation no of s in both product and Reactants is same +4
Similarly in the case of Ag and Mg.