Answer:
= 1.271 J/g°C
Explanation:
Heat released by the metal sample will be equivalent to the heat absorbed by water.
But heat = mass × specific heat capacity × temperature change
Thus;
Heat released by the solid;
= 225 g × c ×(67 -53) , where c is the specific heat capacity of the metal
= 3150 c joules
Heat absorbed by water;
= 25.6 g × 4.18 J/g°C × (53-15.6)
= 4002.0992 joules
Therefore;
3150 c joules = 4002.0992 joules
c =4002.0992/3150
<u> = 1.271 J/g°C</u>
Explanation:
Start with a balanced equation.
2H2 + O2 → 2H2O
Assuming that H2 is in excess, multiply the given moles H2O by the mole ratio between O2 and H2O in the balanced equation so that moles H2O cancel.
5 mol H2O × (1 mol O2/2 mol H2O) = 2.5 mol O2
Answer: 2.5 mol O2 are needed to make 5 mol H2O, assuming H2 is in excess.
Answer:J.J. Thomson, he was using a high-vacuum cathode-ray tube
Explanation:(I Googled it)
Answer:
The temperatures of the objects must be different
Explanation:
if heat is flowing between two objects, then the objects must be at different temperatures.