The 4 main one are Iron, oxygen, silicon, and magnesium<span />
Answer:
m = 180 g
Explanation:
Given data:
Energy absorbed = 108 J
Mas of gold = ?
Initial temperature = 25°C
Final temperature = 29.7 °C
Specific heat capacity of gold = 0.128 J/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT =29.7 °C - 25°C
ΔT = 4.7 °C
108 J = m ×0.128 J/g.°C ×4.7 °C
108 J = m ×0.60 J/g
m = 108 J/0.60 J/g
m = 180 g
Answer:
Increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time)
Explanation:
The chemical reaction between baking soda and vinegar in water is shown in the chemical reaction equation below;
NaHCO3(aq) + CH3COOH(aq) ----->CO2(g) + H2O(l) + CH3COONa(aq)
The chemical name of baking soda is sodium bicarbonate (NaHCO3) while vineager is a dilute acetic acid (CH3COOH) solution. This reaction provides a very easy set up in which we can study the effect of concentration on the rate of chemical reaction.
We must have it behind our minds that increase in the concentration of reactant species increases the rate of chemical reaction. Secondly, the rate of the reaction between baking soda and vinegar can be monitored by observing the volume of CO2 evolved and how quickly it evolves from the reaction mixture.
We can now postulate a hypothesis which states that; 'increase in the concentration of the reactants (vinegar and baking soda) leads to an increase in the rate of reaction (more volume of CO2 is evolved within a shorter time).'
If we go ahead to subject this hypothesis to experimental test, it will be confirmed to be true because a greater volume of CO2 will be evolved within a shorter time as the concentration of the reactants increases.
Answer:
Radiation is energy. It can come from unstable atoms that undergo radioactive decay, or it can be produced by machines. Radiation travels from its source in the form of energy waves or energized particles. There are different forms of radiation and they have different properties and effects.
Related information in Spanish (Información relacionada en español)
On this page:
Ionizing and non-ionizing radiation
Electromagnetic spectrum
Types of ionizing radiation
Periodic Table
Non-Ionizing and Ionizing Radiation
There are two kinds of radiation: non-ionizing radiation and ionizing radiation.
Non-ionizing radiation has enough energy to move atoms in a molecule around or cause them to vibrate, but not enough to remove electrons from atoms. Examples of this kind of radiation are radio waves, visible light and microwaves.
Ionizing radiation has so much energy it can knock electrons out of atoms, a process known as ionization. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes. Ionizing radiation comes from x-ray machines, cosmic particles from outer space and radioactive elements. Radioactive elements emit ionizing radiation as their atoms undergo radioactive decay.
Radioactive decay is the emission of energy in the form of ionizing radiationHelpionizing radiationRadiation with so much energy it can knock electrons out of atoms. Ionizing radiation can affect the atoms in living things, so it poses a health risk by damaging tissue and DNA in genes.. The ionizing radiation that is emitted can include alpha particles, beta particles and/or gamma raysHelpgamma raysA form of ionizing radiation that is made up of weightless packets of energy called photons. Gamma rays can pass completely through the human body; as they pass through, they can cause damage to tissue and DNA.. Radioactive decay occurs in unstable atoms called radionuclides.
Explanation: