<u>Answer:</u>
The height of ramp = 124.694 m
<u>Explanation:</u>
Using second equation of motion,

From the question,
u = 31 m/s; s = 156.3 m, a=0
substituting values

t = 
= 5.042 s
Similary, for the case of landing
t = 5.042 s; initial velocity, u =0
acceleration = acceleration due to gravity, g = 9.81 
Substituting in 

h = 124.694 m
So height of ramp = 124.694 m
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Change in market price is m<span>ovement along the demand curve. </span>
Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
The height above the ground from where the skier start is 11.5 m.
<h3>
Conservation of energy</h3>
The height above the ground from where the skier start is determined by applying the principle of conservation of energy as shown below;
P.E = K.E
mgh = ¹/₂mv²
gh = ¹/₂v²

Thus, the height above the ground from where the skier start is 11.5 m.
Learn more about conservation of energy here: brainly.com/question/166559