Answer:
1.75atm
Explanation:
According to Boyle's law, the pressure P of a fixed mass of gas is inversely proportional to it's volume V provided that the temperature remains constant.

This implies the following;
Provided temperature is kept constant.
Given;

From equation (1), we can write;

Since all the units are consistent, there is no need for conversion.
A spinning top is the answer
Answer
given,
Time period= T = 1.5 s
If it's moving through equilibrium point at t₀= 0 with v = 1.0 m/s
v_max=1.00 m/s
we know,
v_ max=A ω
v = A sin (ωt)
-0.50= -1.00 sin (ωt)
sin (ωt) = 0.5



t = 0.125 s
we have time period T=1.5 it is the time to complete one oscillation
means from eq to right,then left,then eq,then left,then from right to eq
time taken for left = t/4 = 0.125/4 = 0.375 s
smallest value of time
=0.375 + 0.125
= 0.50 sec
Answer:
for the people of the Earth traveling they last much more than 70 years
Explanation:
In order to answer this answer we must place ourselves in the context of special relativity, which are the expressions for time and displacement since the speed of light has a finite speed that is the same for all observers.
The life time of the person is 70 years in a fixed reference system in the person this time we will call their own time (t₀), when the person is placed in a ship that moves at high speed, very close to the speed of the light the time or that an observer measures on Earth, the expression for this time is
t = t₀ 1 / √(1 - (v / c)²)
We see that if the speed of the ship is very close to the speed of light the
the value of the root of the denominator is very high, for which for the person on Earth it measures a very large time even when the person on the ship travels has a time within its 70 years of life
In concussion, for the people of the Earth traveling they last much more than 70 years
Answer:
The strength of magnetic field is
T
Explanation:
Given:
Length of rod
m
Velocity

Induced emf
V
According to the faraday's law
Induced emf = 
We have to find strength of the magnetic field,

T
Therefore, the strength of magnetic field is
T