Answer:
x= 15/2 im pretty sure
Step-by-step explanation:
Answer:
y(t) = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t) + 1
Step-by-step explanation:
y" + y' + y = 1
This is a second order nonhomogenous differential equation with constant coefficients.
First, find the roots of the complementary solution.
y" + y' + y = 0
r² + r + 1 = 0
r = [ -1 ± √(1² − 4(1)(1)) ] / 2(1)
r = [ -1 ± √(1 − 4) ] / 2
r = -1/2 ± i√3/2
These roots are complex, so the complementary solution is:
y = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t)
Next, assume the particular solution has the form of the right hand side of the differential equation. In this case, a constant.
y = c
Plug this into the differential equation and use undetermined coefficients to solve:
y" + y' + y = 1
0 + 0 + c = 1
c = 1
So the total solution is:
y(t) = c₁ e^(-1/2 t) cos(√3/2 t) + c₂ e^(-1/2 t) sin(√3/2 t) + 1
To solve for c₁ and c₂, you need to be given initial conditions.
Answer:
x=4
Step-by-step explanation:
√x+12=x
x+12=x2(Square both sides)
x+12=x2
x+12−x2=x2−x2(Subtract x^2 from both sides)
−x2+x+12=0
(−x−3)(x−4)=0(Factor left side of equation)
−x−3=0 or x−4=0(Set factors equal to 0)
x=−3 or x=4
x=−3(Doesn't work in original equation)
x=√x+12