Answer:
The compression of the spring is 24.6 cm
Explanation:
magnitude of the charge on the left, q₁ = 4.6 x 10⁻⁷ C
magnitude of the charge on the right, q₂ = 7.5 x 10⁻⁷ C
distance between the two charges, r = 3 cm = 0.03 m
spring constant, k = 14 N/m
The attractive force between the two charges is calculated using Coulomb's law;

The extension of the spring is calculated as follows;
F = kx
x = F/k
x = 3.45 / 14
x = 0.246 m
x = 24.6 cm
The compression of the spring is 24.6 cm
Answer:
A. Add mass to the Sun.
Explanation:
A. Add mass to the Sun.
Adding mass will make to take more time for the hydrogen to run out and hence, enough temperature will be developed to fuse helium atom into other heavier elements, and eventually get hot enough to fuse the helium in their cores into carbon.
The only hypothetical solution is that we need to add Mass to the Sun.
Answer:
option b
Explanation:
the heavier one will have twice the kinetic energy of the lighter one
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.