Answer:
Ionic bonding is the attraction between positively- and negatively-charged ions. These oppositely charged ions attract each other to form ionic networks (or lattices). Electrostatics explains why this happens: opposite charges attract and like charges repel.
Explanation:
Answer:
B the rides are to the sun
Na₃PO₄(aq)+AlBr₃(aq)→3NaBr(aq)+AlPO₄(s)
This is a double replacement reaction. You can tell that there has to be 3NaBr molecules since there are 3 Na atoms in sodium phosphate and 3 Br atoms in aluminum bromide. We also know that Na has an oxidation number of +1 which means PO₄ needs to have an oxidation number of -3 while Br has an oxidation number of -1 which means Al has an oxidation number of +3. That means that Al³⁺ and PO₄³⁻ can from AlPO₄
I hope this helps. Let me know if anything is unclear.
Answer: N2(g) + 3H2-> 2NH3(g) This is the balanced equation
Note the mole ratio between N2, H2 and NH3. It is 1 : 3 : 2 This will be important.
moles N2 present = 28.0 g N2 x 1 mole N2/28 g = 1 mole N2 present
moles H2 present = 25.0 g H2 x 1 mole H2/2 g = 12.5 moles H2 present
Based on mole ratio, N2 is limiting in this situation because there is more than enough H2 but not enough N2.
moles NH3 that can be produced = 1 mole N2 x 2 moles NH3/mole N2 = 2 moles NH3 can be produced
grams of NH3 that can be produced = 2 moles NH3 x 17 g/mole = 34 grams of NH3 can be produced
NOTE: The key to this problem is recognizing that N2 is limiting, and therefore limits how much NH3 can be produced.
Explanation: here you go!! good luck! hope this helped