Answer:
The correct answer is <em>C) Two atoms of silver are needed to complete the reaction.</em>
Explanation:
The Law of Conservation of Matter postulates that "the mass is not created or destroyed, only transformed." This means that the reagents interact with each other and form new products with physical and chemical properties different from those of the reagents because the atoms of the substances are ordered differently. But the amount of matter or mass before and after a transformation (chemical reaction) is always the same, that is, the quantities of the masses involved in a given reaction must be constant at all times, not changing in their proportions when the reaction ends.
Then, taking into account the Law of Conservation of Matter, as an atom cannot be created or destroyed in a chemical reaction, the number of atoms that are present in the reagents has to be equal to the number of atoms present in the products.
For this, the chemical equation must be balanced. For that, you must first look at the subscripts next to each atom to find the number of atoms in each compound in the equation. If the same atom appears in more than one molecule, you must add its quantities. On the other hand, the coefficients located in front of each molecule indicate the amount of each molecule for the reaction. This coefficient can be modified to balance the equation, just as you should never alter the subscripts. By multiplying the coefficient mentioned by the subscript, you get the amount of each element present in the reaction.
In this case:
Left side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
Right side: 2 silver (Ag), 2 hydrogen (H) and 1 sulfur (S)
In this case the equation is balanced because you have the same amount of all the elements on each side of the reaction. And <u><em>the 2 in front of 2Ag indicates that,since silver is a reagent, two atoms of silver are needed to complete the reaction. (option C).</em></u>
Answer: Option (C) is the correct answer.
Explanation:
Movement of particles in a substance is responsible for change in state of the substance or matter.
This means that more is the motion of particles more will be their kinetic energy.
Also, kinetic energy is directly proportional to temperature.
K.E =
So, less is the temperature of an object or substance less will be be the motion of its particles. Therefore, molecules will come closer to each other and state of substance will change from liquid to solid.
Thus, we can conclude that the motion of the molecules would decrease at a molecular level if a liquid is placed in cool conditions.
Answer:
B
Explanation:
well heterogenous mixtures are not uniformly distributed these meaning whatever components are "mixed" can be seperated easily
a example of this can be
Soil, oil in water, ice in water
while Homogeneous mixture cannot be seen seperated
Answer:
Model A
Explanation:
Model A represents an atom that is more reactive than the others represented.
Valence electrons actually determine the reactivity of elements. They also determine the properties of elements.
Elements with one valence electron are highly reactive because they need low energy to remove them. They can either gain more electrons to become stable or they share/give out their electrons.
Therefore, Model A is the correct answer because it has one valence electron and its valence electron is farther from the nucleus thereby this makes it more reactive.
Answer:
Gregor Mendel, through his work on pea plants, discovered the fundamental laws of inheritance. He deduced that genes come in pairs and are inherited as distinct units, one from each parent. Mendel tracked the segregation of parental genes and their appearance in the offspring as dominant or recessive traits.
Through his careful breeding of garden peas, Gregor Mendel discovered the basic principles of heredity and laid the mathematical foundation of the science of genetics.
Explanation: