Answer:
The options are unclear, however, the correct option is:
Aqueous solutions of ionic compounds cause to dissociate, hence, ions are free to conduct electricity
Explanation:
Ionic compounds are compounds formed from ions (charged atoms). For example, NaCl is an ionic compound from the following ions; Na+ (cation) and Cl- (anion). One characteristics of ionic compounds is their ability to dissociate into the ions that form them when in an aqueous solution i.e. NaCl will dissociate into Na+ and Cl- when in an aqueous solution.
These disssociated ions are free to conduct electricity, hence, making ionic compounds good conductors of electricity.
The compound
is formed only by sharing of electrons between the atoms. The structure of the compound is shown in the image.
Each line between two atoms represents the sharing of an electron pair which results in the formation of a single bond. Since, carbon has 4 electrons in its valence shell and hydrogen has 1 electron in its valence shell so in order to complete the octet ( to have 8 electrons in their valence shell, noble gas configuration) to attain stability carbon needs 4 more electrons and hydrogen needs 1 electron. So, sharing of electron will occur as shown in the image and the formed compound is stable in nature.
Since, the bond that is formed by sharing of electrons between atoms is known as covalent bond. So, covalent bonding is most important in
.
Orbital
All atoms have the same number of electrons as protons. Negative electrons are attracted to the positive nucleus. This force of attraction keeps electrons constantly moving around the nucleus. The region where an electron is most likely to be found is called an orbital.
Here you go :)
Answer:
38.9 grams of 
Explanation:
0.187 mol BaCl2 x 
0.187 m x 208 g/m
0.187 x 208 g
38.896 g --> 38.9 g BaCl2
Rutherford's Gold Foil Experiment proved the existence of a small massive center to atoms, which would later be known as the nucleus of an atom. Ernest Rutherford, Hans Geiger and Ernest Marsden carried out their Gold Foil Experiment to observe the effect of alpha particles on matter.