Answer:
- <u><em>B. Negative association</em></u>
<u><em></em></u>
Explanation:
<em>Negative association</em> is when the independent and dependent variables move in opposite directions: if the dependent variable increases, the independent variable decreases, and if the dependent variable decreases, the independent variable increases.
As you see in the diagram, as you move to the right on the horizontal axis, meaning that the independent variable is increasing, the points lie lower, meaning that the independent variable decreases.
Therefore, if you draw a line of best fit, it will have a negative slope. A negative slope indicates <em>negative association.</em>
The graph certainly shows association as there is a clear trend; else the points would be randomly dispersded.
<u>Answer:</u> Boyle's law states that gas volume is inversely proportional to pressure.
<u>Explanation:</u>
Boyle's law is one of the law used to determine the Ideal Gas equation.
This law states that pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles
Mathematically,
(at constant temperature and number of moles)
The above expression can also be written as:

where,
are initial pressure and volume of the gas
are final pressure and volume of the gas
Hence, Boyle's law states that gas volume is inversely proportional to pressure.
Answer:
For evaporation you need a warm, preferably humid temperature. The rate of evaporation increases with an increase in temperature. A windy climate is best, as wind helps to remove the evaporated water vapour, and therefore creating a better scope for evaporation to continue. The speed of wind is important for evaporation because the wind pulls in dry air, increasing the rate of evaporation.
Short Answer- Hot and humid temperature, lots of wind speed.
Answer:
1) harm life forms that rely on carbonate-based shells and skeletons, 2) harm organisms sensitive to acidity
Explanation:
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g