Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.
Answer: A
Explanation: isotopes of the same thing element have the same number of protons in the nucleus but differ in the number of neutrons.
Answer:
32cm³
Explanation:
Given parameters:
Density of substance = 2.7g/cm³
Mass of substance = 86.4g
Unknown:
Volume of substance = ?
Solution:
Density is the mass per unit volume of a substance.
Density = 
Since the unknown is volume we solve for it;
mass = density x volume
86.4 = 2.7 x volume
volume =
= 32cm³
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Electrical Energy because the electrons in the battery travel from out one end of the battery through a circuit and back to the other end