The law of superposition helps scientists determine the relative age of a layer of sedimentary rock. the law of superposition is <span>a basic </span>law<span> of geochronology, stating that in any undisturbed sequence of rocks deposited in layers, the youngest layer is on top and the oldest on bottom, each layer being younger than the one beneath it and older than the one above it</span> .
hope this helps :)
Answer:
8.3
Explanation:
thats what i think sorry if its wrong im ok at doing this stuff
Answer:
Gwen’s assumption of asteroid hit as long term change is incorrect. Asteroid hit is not a long term change, instead, it is a short term change.
Explanation:
Examples of short term changes are drought, flood, volcanic eruption, etc. A short term change occurs quickly and can immediately affect organisms but it doesn’t become a reason for species extinction. The effects of a short term change don’t prevail over a long span of time.
Examples of long term changes are ice age, global warming, deforestation, etc. Unlike a short term change, it takes time but the consequences are far-reaching. It can lead to species extinction.
In this question, asteroid hit is a quick and unexpected hazard, unlike the slow long term environmental changes.
The answer is 2Hz
Using the formula f= 1/T we can plug in .5 for T and solve for frequency.
Answer:
a = 5.05 x 10¹⁴ m/s²
Explanation:
Consider the motion along the horizontal direction
= velocity along the horizontal direction = 3.0 x 10⁶ m/s
t = time of travel
X = horizontal distance traveled = 11 cm = 0.11 m
Time of travel can be given as

inserting the values
t = 0.11/(3.0 x 10⁶)
t = 3.67 x 10⁻⁸ sec
Consider the motion along the vertical direction
Y = vertical distance traveled = 34 cm = 0.34 m
a = acceleration = ?
t = time of travel = 3.67 x 10⁻⁸ sec
= initial velocity along the vertical direction = 0 m/s
Using the kinematics equation
Y =
t + (0.5) a t²
0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²
a = 5.05 x 10¹⁴ m/s²