Answer:
At the top of the hill.
Explanation:
As the roller coaster goes up the hill, kinetic energy (K.E) decreases, gravitational potential energy (G.P.E) increases .
As it reach the top of the hill, K.E becomes zero and G.P.E reaches <em>m</em><em>a</em><em>x</em><em>i</em><em>m</em><em>u</em><em>m</em> .
As it goes down the hill, K.E starts to increase and G.P.E decrease .
At the bottom of the hill, K.E reaches <em>maximum</em> and G.P.E becomes zero .
(Correct me it I am wrong)
The electric field generated by a point charge is given by:

where

is the Coulomb's constant
Q is the charge
r is the distance from the charge
We want to know the net electric field at the midpoint between the two charges, so at a distance of r=5.0 cm=0.05 m from each of them.
Let's calculate first the electric field generated by the positive charge at that point:

where the positive sign means its direction is away from the charge.
while the electric field generated by the negative charge is:

where the negative sign means its direction is toward the charge.
If we assume that the positive charge is on the left and the negative charge is on the right, we see that E1 is directed to the right, and E2 is directed to the right as well. This means that the net electric field at the midpoint between the two charges is just the sum of the two fields:
The initial force of the throw overcomes gravity quite easily. Then, gravity begins to bring it back down to earth, making a curved path.
The Answer is B because primary consumers need to get their food from plants.
Answer:
5.5 x 10^5 N/C
Explanation:
t = 0.001 s
Δp = - 8.8 x 10^-17 kg m /s
Force is equal to the rate of change of momentum.
F = Δp / Δt
F = (8.8 x 10^-17) / 0.001 = 8.8 x 10^-14 N
q = 1.6 x 10^-19 C
Electric field, E = F / q = (8.8 x 10^-14) / (1.6 x 10^-19)
E = 5.5 x 10^5 N/C