Answer:
the acceleration of the rocket is: a=vemΔmΔt−g a = v e m Δ m Δ t − g .
Explanation:
I answered this before.
hope this helps! :)
Explanation:
(a) Find the magnitude of the angular acceleration of the wheel.
- angular acceleration = angular speed /time
- angular acceleration = 12.9/2.98 = 4.329rad/s²
(b) Find the angle in radians through which it rotates in this time interval.
- angular speed = 2x3.14xf
- 12.9rad = 2 x3.14
- rad = 6.28/12.9
- rad = 0.487
Now we convert rad to angle
- 1 rad = 57.296°
- 0.487 = unknown angle
- unknown angle =57.296 x 0.487 = 27.9°
The angle in radians = 27.9°
Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Remember that the total
velocity of the motion is the vector sum of the velocity you would have in
still water and the stream. Always place the vectors carefully to be able to
come up with an accurate sum vector.
<span> </span>
Answer:
Most of UV radiation is stopped by glass & this is why you will not get sunburns behind a glass. The glass simply filters out the UV radiation that is responsible for the sunburns & protect your skins from these energetic & somewhat harmful radiation
Explanation: