Charging a balloon and rubbing it on wool is an example of static electricity.
:)
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
The gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
<h3>What is the gravitational force of the earth on the person?</h3>
The gravitational force exerted by the earth on a person standing on the earth's surface is given below as follows:
where
G = 6.67 * 10⁻¹¹
m¹ = 62 kg
m² = 5.97 * 10²⁷ kg
r = 6.4 * 10⁶ m

Therefore, the gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
Learn more about gravitational force at: brainly.com/question/940770
#SPJ1
Answer:

Explanation:
We are asked to find the final velocity of the boat.
We are given the initial velocity, acceleration, and time. Therefore, we will use the following kinematic equation.

The initial velocity is 2.7 meters per second. The acceleration is 0.15 meters per second squared. The time is 12 seconds.
= 2.7 m/s - a= 0.15 m/s²
- t= 12 s
Substitute the values into the formula.

Multiply the numbers in parentheses.




Add.

The final velocity of the boat is <u>4.5 meters per second in the positive direction.</u>
Answer:
Explanation:
The relation between activity and number of radioactive atom in the sample is as follows
dN / dt = λ N where λ is disintegration constant and N is number of radioactive atoms
For the beginning period
dN₀ / dt = λ N₀
58.2 = λ N₀
similarly
41 = λ N
dividing
58.2 / 41 = N₀ / N
N = N₀ x .70446
formula of radioactive decay


- λ t = ln .70446 = - .35
t = .35 / λ
λ = .693 / half life
= .693 / 5715
= .00012126
t = .35 / .00012126
= 2886.36
= 2900 years ( rounding it in two significant figures )