Molar mass of CaCl2 = 40+ ( 35.5 ×2)=110
Mr of Ca(OH)2 = 40+ (16+1)×2 =74
%of Ca = (40÷ 74)×10=...
1 m = 100cm...
1cm = (1÷100) m
So 45.5 cm = 45.5 ×(1÷100) =....
1km = 1000m
1m = 100 cm
1cm =10mm
So 1km = 1000×100×10 mm
Now convert
Mass is equal to moles x molar mass, and the molar mass of C6H12 is 84, therefore the mass is 436.8 g, but 437 rounded to correct significant figures
Answer: The retention factor describes the rate at which a compound migrates on a microscopic level.
The retention factor (Value) serves as a simple measurement of the relative binding of the compound of interest under the experimental conditions.
Retention factor values are used in identification purposes;
• Use to determine the affinity of the solute to the solvent
• Greater retention factor means greater affinity of solute to the solvent
Explanation:
Answer:
64799.4 J
Explanation:
The following data were obtained from the question:
Mass (M) = 1.05 kg = 1.05 x 1000 = 1050g
Specific heat capacity (C) = 0.9211 J/g°C
Initial temperature (T1) = 23°C
Final temperature (T2) = 90°C
Change in temperature (ΔT) = T2 – T1 =
90°C – 23°C = 67°C
Heat required (Q) =....?
The heat required to increase the temperature of the kettle can b obtain as follow:
Q = MCΔT
Q = 1050 x 0.9211 x 67
Q = 64799.4 J
Therefore, 64799.4 J of heat is required to increase th temperature of the kettle from 23°C to 90°C.