Answer:
Sketch the following three graphs:
1) y = (x - 5)²
2) y = -(x - 5)²
3) y = x - 5
First two are parabolas with vertex at (5,0)
Third one is a line which intersects both the parabolas as (5,0)
The graph shows that the fee caps at 21 days. If the fee was the same today as it was yesterday, that means she must be at least 22 days late as it is the first day the fee is the same as the day before.
4sin²(x) = 5 - 4cos(x)
4{¹/₂[1 - cos(2x)]} = 5 - 4cos(x)
4{¹/₂[1] - ¹/₂[cos(2x)]} = 5 - 4cos(x)
4[¹/₂ - ¹/₂cos(2x)] = 5 - 4cos(x)
4[¹/₂] - 4[¹/₂cos(2x)] = 5 - 4cos(x)
2 - 2cos(2x) = 5 - 4cos(x)
- 2 - 2
-2cos(2x) = 3 - 4cos(x)
-2[2cos²(x) - 1] = 3 - 4cos(x)
-4cos²(x) + 2 = 3 - 4cos(x)
- 2 - 2
-4cos²(x) = 1 - 4cos(x)
-4cos²(x) + 4cos(x) - 1 = 0
4cos²(x) - 4cos(x) + 1 = 0
[2cos(x) - 1]² = 0
2cos(x) - 1 = 0
+ 1 + 1
2cos(x) = 1
2 2
cos(x) = ¹/₂
cos⁻¹[cos(x)] = cos⁻¹(¹/₂)
x = 60, 300
x = π/3, 5π/3
[0, 2π) = 0 ≤ x < 2π
[0, 2π) = 0 ≤ π/3 ≤ 2π or 0 ≤ 5pi/3 < 2π
Answer:
The value would most likely be 13cm
Step-by-step explanation: