Regardless of the speed of the ball or its angle, once it has left the kickers foot it's acceleration is always g downward. -9.81m/s^2
Answer:
Mechanical energy = 3.92 J
exactly 3.92 j
Explanation:
As we know that mechanical energy is sum of kinetic energy and potential energy of the system
so here we can say that mechanical energy is sum of kinetic energy of ball and its potential energy
Since ball is at rest so kinetic energy of the ball must be ZERO
Now for potential energy we know that

now we know
m = 0.2 kg
h = 2 m
now for potential ene'rgy


so mechanical energy is given as
Mechanical Energy = 3.92 + 0 = 3.92 J
The answer is 1.99 × 10⁻¹⁰ m.
To calculate this we will use De Broglie wavelength formula:
<span>λ = h/(m*v)
</span><span>λ - the wavelength
</span>h - Plank's constant: h = 6.626 × 10⁻³⁴ Js
v - speed
m - mass
It is given:
<span>λ = ?
</span>m = 9.11 × 10⁻²⁸<span> g
v = </span>3.66 × 10⁶<span> m/s
After replacing in the formula:
</span>λ = h/(m*v) = 6.626 × 10⁻³⁴ /(9.11 × 10⁻²⁸ * 3.66 × 10⁶) = 1.99 × 10⁻¹⁰ m
Acceleration = change in velocity/time
By F = ma,
6 = 33 x change in velocity / 9
change in velocity = +1.636 m/s