The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4
Answer:
Answer D : about 1067 meters
Explanation:
There are two steps to this problem:
1) First find the time it takes the plane to stop using the equation for the acceleration:

Where Vf is the final velocity of the plane (in our case: zero )
Vi is the initial velocity of the plane (in our case: 80 m/s)
is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

with units corresponding to seconds given the quantities involved in the calculation.
2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Where the answer results in units of meters given the quantities used in the calculation.
We round this to 1067 meters
Option C
The fact that voltage can be created by exerting force on a crystal is used in Knock sensor
<u>Explanation:</u>
Any knock to an engine exhibits as a little shake that is distinguished by the knock sensor. This sensor acts by altering the fluctuation to an electrical sign, which is later transferred to the processor mastering the ignition system.
There the variation in quake to the voltage sign modifies the timing improvements on the kindling. The knock sensor is placed on the engine base, cylinder cap or consumption manifold. This is because its purpose is to sense fluctuations affected by engine knock or explosion.
Answer: Normal fault
Explanation:
The type of fault that is explained above is a normal fault. We should note that normal faults typically takes place in a divergent boundary in a scenario where the crusts may have been pulled apart.
Since the crust is pulled apart in this case, it leads to the downward movement of the hanging wall which leads to the football being above the hanging wall.
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1