The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
The answer is either number one or two.
Answer: The correct option is A.
Explanation: In a chemical reaction, reactants react to form a number of products.
For the formation of products, the bonds of the individual reactants must be broken and the bonds of the products must be formed.
For example: Formation of water from hydrogen gas and oxygen gas. Reaction follows:

The Bonds of hydrogen and oxygen molecule are broken and new bonds between hydrogen and oxygen atoms are formed to give water molecule.
Answer:
P_2 =0.51 atm
Explanation:
Given that:
Volume (V1) = 2.50 L
Temperature (T1) = 298 K
Volume (V2) = 4.50 L
at standard temperature and pressure;
Pressure (P1) = 1 atm
Temperature (T2) = 273 K
Pressure P2 = ??
Using combined gas law:



