The correct answer is A, Water is not used up during this process. This is because when cellular respiration occurs oxygen and glucose combine. When this takes place water is left behind when carbon is separated from glucose. Because water is being left behind it is not being used up in this process.
The number of bonds for a neutral atom is equal to the number of electrons in the full valence shell (2 or 8 electrons) minus the number of valence electrons. This method works because each covalent bond that an atom forms adds another electron to an atoms valence shell without changing its charge.
Sulfur reacts with oxygen to produce sulfur dioxide. That is for every mole of sulfur reacted, one mole of sulfur dioxide also is produced. With the given mole of sulfur dioxide, the amount of sulfur in mass is determined by multiplying the number of moles to the molar mass of sulfur (32 g/mol).
Explanation: <em>The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis.</em>
(Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen)
Answer: a) 
b) 
Explanation:
The reaction is :

Rate = Rate of disappearance of
= Rate of appearance of
Rate =
= ![\frac{d[NO_2]}{4dt}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNO_2%5D%7D%7B4dt%7D)
Rate of disappearance of
=
= 
a) Rate of disappearance of
= ![-\frac{d[N_2O_5]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BN_2O_5%5D%7D%7B2dt%7D)
Rate of appearance of
= ![\frac{d[NO_2]}{4dt}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNO_2%5D%7D%7B4dt%7D)
b) Rate of appearance of
= ![\frac{d[NO_2]}{dt}=2\times 1.7\times 10^{-4}}=3.4\times 10^{-4}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D2%5Ctimes%201.7%5Ctimes%2010%5E%7B-4%7D%7D%3D3.4%5Ctimes%2010%5E%7B-4%7D)