Answer : The enthalpy change for the process is 52.5 kJ/mole.
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the solution
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the solution
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water or solution = 
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(12.1J/^oC\times 6.1^oC)+(100.0g\times 4.18J/g^oC\times 6.1^oC)]](https://tex.z-dn.net/?f=q%3D%5B%2812.1J%2F%5EoC%5Ctimes%206.1%5EoC%29%2B%28100.0g%5Ctimes%204.18J%2Fg%5EoC%5Ctimes%206.1%5EoC%29%5D)

Now we have to calculate the enthalpy change for the process.

where,
= enthalpy change = ?
q = heat released = 2626.61 J
n = number of moles of copper sulfate used = 

Therefore, the enthalpy change for the process is 52.5 kJ/mole.