It take more energy to break the bonds of the reactants and less energy is given off when the product bonds are formed.
<h3>What is Energy?</h3>
Energy is defined as the ability to do work. Work is done in the breaking or formation of bonds.
The standard Enthalpy (ΔH) of water which was formed in the given reaction is negative.
ΔH= Δproduct - Δreactant
This means that the energy to break the bonds of the reactants is more.
Read more about Enthalpy here brainly.com/question/14291557
<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
The density is calculated as mass per volume, so if we want to solve for mass, we would multiply density by volume.
For Part A: if we have a density of 0.69 g/mL, and a volume of 280 mL, multiplying these will give a mass of: (0.69 g/mL)(280 mL) = 193.2 g. Rounded to 2 significant figures, this is 190 g gasoline.
For Part B: if we have a density of 0.79 g/mL, and a volume of 190 mL, multiplying these will give a mass of: (0.79 g/mL)(190 mL) = 150.1 g. Rounded to 2 significant figures, this is equal to 150 g ethanol.
<u><em>In metallic bonding, the valence electrons are free to move throughout the metal structure. Metallic bonding is the electrostatic attraction between the metal atoms or ions and the delocalized electrons. This is why atoms or layers are allowed to slide past each other, resulting in the characteristic properties of malleability and ductility.</em></u>