1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
14

A charge of 19 nC is uniformly distributed along a straight rod of length 15 m that is bent into a circular arc with a radius of

5.7 m. What is the magnitude of the electric field at the center of curvature of the arc?

Physics
1 answer:
Salsk061 [2.6K]3 years ago
8 0

Answer:

The magnitude of the electric field at the center of curvature of the arc is 3.87 N/C

Explanation:

Please see the attachments below

You might be interested in
Which statement best describes the difference between acceleration and velocity?
Sloan [31]
C. is the answer because acceleration is the change in velocity in time while velocity is speed with a direction
8 0
3 years ago
Emilio tries to jump to a nearby dock from a canoe that is floating in the water.Instead of a canoe that is floating in the wate
elixir [45]
Oooo that ones hard. ummm... idk i think we should just leave it to the experts ya know.
7 0
3 years ago
A mole of a monatomic ideal gas at point 1 (101 kPa, 5 L) is expanded adiabatically until the volume is doubled at point 2. Then
Paha777 [63]

Answer:

(a). Check attachment.

(b). 280.305 J.

(c). 31.81 kpa; 38.26K.

(d). 24.05K.

(e). 24.05k; 40kpa.

(f). -138.6J.

Explanation:

(a). Kindly check the attached picture for the diagram showing the four process.

1 - 2 = adiabatic expansion process.

2 - 3 = Isochoric process.

3 - 4 = isothermal process.

4 - 1 = isochoric process.

(b). Recall that the process from 1 to is an adiabatic expansion process.

NB: b = 5/3 for a monoatomic gas.

Then, the workdone = (1/ 1 - 1.66) [ (p1 × v1^b)/ v2^b × v2 - (p1 × v1)].

= ( 1/ 1 - 5/3) [ (101 × 5^5/3) × 10^1 -5/3] - 101 × 5.

Thus, the workdone = 280.305 J.

(c). P2 = P1 × V1^b/ V2^b = 101 × 5^5/3/ 10^5/3 = 31.81 kpa.

T2 = P2 × V2/ R × 1 = 31.81 × 10/ 8.324 = 38.36k.

(d). The process 2 - 3 is an Isochoric process, then;

T3 = T2/P2 × P3 = 38.26/ 31.82 × 20 = 24.05K.

(e). The process 3 - 4 Is an isothermal process. Then, the temperature at 4 will be the same temperature at 3. Tus, we have the temperature; point 3 = point 4 = 24.05k.

The pressure can be determine as below;

P4 = P3 × V3/ V4 = 20 × 10/ 5 = 200/ 5 = 40 kpa.

(f) workdone = xRT ln( v4/v3) = 1 × 8.314 × 24.05 × ln (5/10) = - 138.6 J

6 0
3 years ago
A wave traveling in the positive x-direction with a frequency of 50.0 Hz is shown in the figure below. Find the following values
Klio2033 [76]

Answer:

Explanation:

a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.

b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or \lambda=20.0cm

c. The period, or T, of a wave is found in the equation

f=\frac{1}{T} were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:

50.0=\frac{1}{T} so

T=\frac{1}{50.0} and

T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)

d. The speed of the wave is found in the equation

f=\frac{v}{\lambda} and since we already have the frequency and we solved for the wavelength already, filling in:

50.0=\frac{v}{20.0} and

v = 50.0(20.0) so

v = 1.00 × 10³ m/s

And there you go!

5 0
3 years ago
Unpolarized light of intensity I0 = 950 W/m2 is incident upon two polarizers. The first has its polarizing axis vertical, and th
Ket [755]

Answer:

Intensity of the light (first polarizer) (I₁) = 425 W/m²

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

Explanation:

Given:

Unpolarized light of intensity (I₀) = 950 W/m²

θ = 65°

Find:

a. Intensity of the light (first polarizer)

b. Intensity of the light (second polarizer)

Computation:

a. Intensity of the light (first polarizer)

Intensity of the light (first polarizer) (I₁) = I₀ / 2

Intensity of the light (first polarizer) (I₁) = 950 / 2

Intensity of the light (first polarizer) (I₁) = 425 W/m²

b. Intensity of the light (second polarizer)

Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ

Intensity of the light (second polarizer) (I₂) = (425)(0.1786)

Intensity of the light (second polarizer) (I₂) = 75.905 W/m²

5 0
3 years ago
Other questions:
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in an Egyptian pyramid, give
    8·1 answer
  • The water skier has a mass of 73 kg. Find the magnitude of the
    11·1 answer
  • A rifle of mass 2 kg is suspended by strings. The rifle fires a bullet of mass 0.01 kg at a speed of 200 m/s. The recoil velocit
    14·1 answer
  • Up-regulation involves the loss of receptors and prevents the target cells from overreacting to persistently high hormone levels
    13·1 answer
  • What does mechanical wave mean?
    14·1 answer
  • A groove is provided in a saucer for placing teacup. why ?
    15·1 answer
  • Which event best helped becquerel determine uranium radiate rays?
    13·1 answer
  • Can someone help me with this question please picture is above
    15·1 answer
  • How much power is needed to produce 500 joules of work if 20 watts are used?
    8·2 answers
  • 12. Suppose a person is covered head to foot by wool clothing with average thickness of 2.00 cm and is transferring energy by co
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!