Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
60 000 N
Explanation:
1 pa = 1 N/m^2
you have 300 000 of these = 300 000 N /m^2
but only an area of .2 m^2
300 000 N / m^2 * .2 m^2 = 60 000 N
Answer: 1000 Hz
Explanation:
You can calculate frequency by dividing velocity by wavelength
Frequency = velocity/wavelength
Find velocity first.
900 m/3 s = 300 m/s
Plug values in to find frequency.
F = (300 m/s)/0.3 m
F = 1000 Hz
Answer:
z
Explanation:
x repersents a new moon and the others repersent quarter moons
(x is a new moon because new moons are often the phase when the moon is close to earths sun)
<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:
