True, scientists often talk to each other to figure out if their results were similar and what they could have done better.
Although, talking to other scientists does have risks, other scientists could copy your work and further better it.
So, your final answer is TRUE, sorry for the long answer, I needed to have a word count about 20 characters and then I got carried away! lol
Answer:
A and B
Explanation:
Because both of them have only magnitude not direction.
Answer:
Atoms of tellurium (Te) have the greatest average number of neutrons equal to 76.
Explanation:
In the periodic table, Elements are represented with their respected symbols. Above the symbol is the elements atomic number which is equal to the number of protons in each atom. Below the symbol is the mass number of that element which is roughly equal to the sum of neutrons and protons of that atom.
To calculate the number of neutrons we can take the difference of Atomic number and mass number:
Number of neutrons = mass number - atomic number
<u>- Tin:</u>
Atomic number = 50
Mass number = 119
Number of neutrons = mass number - atomic number = 119 - 50
Number of neutrons = 69
<u>- Antimony(Sb):</u>
Atomic number = 51
Mass number = 122
Number of neutrons = mass number - atomic number = 122 - 51
Number of neutrons = 71
<u>- Tellurium(Te):</u>
Atomic number = 52
Mass number = 128
Number of neutrons = mass number - atomic number = 128 - 52
Number of neutrons = <u>76</u>
<u>- Iodine(I):</u>
Atomic number = 53
Mass number = 127
Number of neutrons = mass number - atomic number = 127 - 53
Number of neutrons = 74
Here, the greatest number of neutrons is for the atoms of Tellurium(Te).
Answer
given,
given,
small cube side = 10 cm
larger cube side = 12 cm
density of steel = 7 g/cm³
density of aluminium = 2.7 g/cm³
density of the water (ρ₁)= 1 g/cm³
Cube A and B made of steel
buoyant force of Cube A
B₁ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube B
B₂ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force of Cube C
B₃ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube D
B₄ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force acting on the cube depends on the density of the fluid
hence,
B₂ = B₄ > B₁ = B₃
Answer:
The frequency of infrared wave is 35.385 GHz
Explanation:
Given data:
Wavelength of infrared light = 8.45 mm = 8.45 x
m
Velocity of infrared light = 2.99 x
m/s
To find: frequency of the infrared wave = ?
We know that the wavelength and frequency are inversely proportional and the formula to derive frequency with velocity and wavelength is:
c = μλ, where
c is velocity of light
μ is frequency of light
λ is wavelength of light
Hence the frequency of light μ = c/λ
= 
=
x

= 35.385 x
Hz (since 1
= 1 Hz)
= 35.385 GHz