Answer:
the frequency heard by the observer is equal to 2677 Hz
Explanation:
given,
velocity of the observer = 17 m/s
speed of the sound = 343 m/s
velocity of the source = 0 m/s
frequency emitted from the source = 2550 Hz

velocity of observer is negative as it is approaching the source. f = 2676.38 Hz ≈ 2677 Hz
hence, the frequency heard by the observer is equal to 2677 Hz
Answer:
The answer is: To accelerate an object <u>the force applied to the object</u> has to increase.
Explanation:
the acceleration of an object <u>increases with increased force</u> and <u>decreases with increased mass.</u>
Answer:
a = 2d / t²
Explanation:
d = ½ at²
Multiply both sides by 2:
2d = at²
Divide both sides by t²:
a = 2d / t²
Answer:
a) the magnitude of the force is
F= Q(
) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = 
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) =
, where p = q × s
E(r) =
where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q(
)
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²