Answer:
The vibrational frequency of the rope is 5 Hz.
Explanation:
Given;
number of complete oscillation of the rope, n = 20
time taken to make the oscillations, t = 4.00 s
The vibrational frequency of the rope is calculated as follows;

Therefore, the vibrational frequency of the rope is 5 Hz.
Your driving zone refers to the areas of space around your car, it refers to all the area around your car as far as your eyes can see.
Each car has seven zones numbered from 1 to 7. Driving zone 7 corresponds with THE SPACE YOUR VEHICLE IS OCCUPYING. The other zones are as follows:
zone 1 = area directly infront of your car
zone 2 = your left lane
zone 3 = your right lane
zone 4 = left rear of your car
zone 5 = right rear of your car
zone 6 = area directly behind your car.
<span />
Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V
Answer:
.
Explanation:
When the ball is placed in this pool of water, part of the ball would be beneath the surface of the pool. The volume of the water that this ball displaced is equal to the volume of the ball that is beneath the water surface.
The buoyancy force on this ball would be equal in magnitude to the weight of water that this ball has displaced.
Let
denote the mass of this ball. Let
denote the mass of water that this ball has displaced.
Let
denote the gravitational field strength. The weight of this ball would be
. Likewise, the weight of water displaced would be
.
For this ball to stay afloat, the buoyancy force on this ball should be greater than or equal to the weight of this ball. In other words:
.
At the same time, buoyancy is equal in magnitude the the weight of water displaced. Thus:
.
Therefore:
.
.
In other words, the mass of water that this ball displaced should be greater than or equal to the mass of of the ball. Let
denote the density of water. The volume of water that this ball should displace would be:
.
Given that
while
:
.
In other words, for this ball to stay afloat, at least
of the volume of this ball should be under water. Therefore, the volume of this ball should be at least
.
Answer:
0.25A
1.0A
2.5A
Explanation:
this is only for the calculated current column on edge