Answer:
When two tectonic plates meet, we get a “plate boundary.” There are three major types of plate boundaries, each associated with the formation of a variety of geologic features.
Explanation:
Answer:
The upper motor neurons synapse in the spinal cord connect with anterior horn cells of lower motor neurons, usually via interneurons. The anterior horn cells are the cell bodies of the lower motor neurons and are located in the grey matter of the spinal cord.
Explanation:
Interneurons are the central nodes of neural circuits, enabling communication between the upper motor neurons, sensory or motor neurons located in the brain and spinal cord and they send signals to lower motor neurons or central nervous system (CNS) in the brain stem and spinal cord . When they get a signal from the upper motor neurons, they send another signal to your muscles to make them contract. They play vital roles in reflexes, neuronal oscillations, and neurogenesis in the adult mammalian brain.
Renshaw cells are among the very first identified interneurons. They are excited by the axon collaterals of the motor neurons. In addition, Renshaw cells make inhibitory connections to several groups of motor neurons.
Answer:
Explanation:
Givens
Vi = 10 m/s
Vf = 40 m/s
a = 3 m/s^2
Formula
a = (vf - vi) /t Substitute the givens into this formuls
Solution
3 = (40 - 10) / t Multiply both sides by t
3*t = t(40 - 10)/t Combine. Cancel t's on the right
3*t = 30 Divide by 3
3t/3 = 30 / 3
Answer: t = 10 seconds.
First let us assign variables,
d = distance travelled
t = time it took
v = velocity of the commercial airline
In linear physics, the equation for velocity is given as:
v = d / t
Rewriting for d:
d = v t
We know that the distance to and from south America are equal
therefore:
d1 (going) = d2 (return)
Let us say that velocity of air is v3. Since going to South
America, the wind is against the direction of the plane and the return trip is
the opposite, therefore:
(v1 - v3) t1 = (v1 + v3) t2
(v1 – v3) 4 = (v1 + v3) 3.53
4 v1 – 4 v3 = 3.53 v1 + 3.53 v3
0.47 v1 = 7.53 v3
v1 = 16.02 v3
Since we also know that:
(v1 - v3) t1 = 784
(16.02 v3 – v3) * 4 = 784
60.085 v3 = 784
v3 = 13.05 mph
Therefore the speed of the plane in still air, v1 is:
v1 = 16.02 * 13.05
<span>v1 = 209.03 mph (ANSWER)</span>
<span> </span>
A. 9 J
In a force-distance graph, the work done is equal to the area under the curve in the graph.
In this case, we need to extrapolate the value of the force when the distance is x=30 cm. We can easily do that by noticing that there is a direct proportionality between the force and the distance:
where k is the slope of the line. We can find k, for instance chosing the point at x=5 cm and F=10 N:
And now we can calculate the work by calculating the area under the curve until x=30 cm, F=60 N:
B. 24.5 m/s
The mass of the arrow is m=30 g=0.03 kg. The kinetic energy of the arrow when it is released is equal to the work done by pulling back the bow for 30 cm:
where m is the mass of the arrow and v is its speed. By re-arranging the formula and using W=9 J, we find the speed: