Answer:
There are two components for a two-dimensional coordinate system/vector.
Explanation:
For two-dimensional vectors, such as velocity, acceleraton, etc, there are two components, the x- and y-components.
These components could be rotated or translated, depending on the coordinate system.
Instead of rectangular cartesian system, the components could also be in the form of polar coordinates, such as radius and theta (angle).
For three-dimensional vectors, such as velocity in space, there are three components, in various coordinate systems.
Answer:
<h2>The answer is 12 m</h2>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
distance = velocity × time
From the question we have
distance = 2 × 6
We have the final answer as
<h3>12 m</h3>
Hope this helps you
Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Answer:
Explanation:
Force on a moving charge is given by the following relation
F = q ( v x B )
for proton
q = e , v = vi , B = Bk
F = e ( vi x Bk )
= Bev - j
= - Bevj
The direction of force is along negative of y axis or -y - axis.
for electron
q = - e , v = vi , B = Bk
F = - e ( vi x Bk )
= - Bev - j
= Bevj
The direction of force is along positive of y axis or + y - axis.