Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz
Fish swimming forward in the water, the water gets pushed backward because the fish moving forward is forcing the water to move backward, the motion forward and backward are the same, they are opposite and equal.
Answer:
v = 54 m/s
Explanation:
Given,
The maximum height of the flight of golf ball, h = 150 m
The velocity at height h, u = 0
The velocity of the golf ball right before it hits the ground, v = ?
Using the III equations of motion
<em> v² = u² + 2gh</em>
Substituting the given values in the above equation,
v² = 0 + 2 x 9.8 x 150 m
= 2940
v = 54 m/s
Hence, the speed of the golf ball right before it hits the ground, v = 54 m/s
Answer:
weight
Explanation:
" the greater the pull of gravity on an object, the greater the weight of that object." In physics, weight is measured in newtons (N), the common unit for measuring force.
Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly