912.
outer ear:
pinna
ear canal
middle ear:
ossicles and ear drum
inner ear:
semcircular canals
cochlea
auditory nerve
13.
frequency = wavespeed ÷ wavelength
14.
if frequency increases you would experience a higher pitch in sound
15.
humans can hear 20Hz to 20kHz
16.
The Doppler effect is the change in frequency or wavelength of a wave for an observer who is moving relative to the wave source. Can be used for machines measuring speed via doppler effect.
17.
Doppler in hospitals can be used for ultrasound to provide images for diagnosis and monitoring.
Answer:
Geothermal power can provide consistent electricity throughout the day and year - continuous baseload power and flexible power to support the needs of variable renewable energy resources, such as wind and solar. Sustainable Investment.
Explanation:
THIS IS WHY WE SHOULD USE GEOTHERMAL ENERGY IN FUTURE
YOU CAN MARK ME AS BRAINIEST IF YOU WANT
Answer:
1200N/m
Explanation:
given parameters:
force on the motorcycle spring is 240N
Extension 2cm or 0.02m
unknown _
spring constant:
:?
solution:
to a spring a force applied is given as :
f=ke
f is applied as force
k is spring constant
e is the Extension
240= kx0.02
k=1200N/m
Answer:
Explanation:
You are looking for the resistance to start with
W = E * E/R
75 = 240 * 240 / R
75 * R = 240 * 240
R = 240 * 240 / 75
R = 57600 / 75
R = 768
Now let's see what happens when you try putting this into 110
W = E^2 / R
W = 120^2 / 768
W = 18.75
So the wattage is rated at 75. 18.75 is a far cry from that. I think they intend you to set up a ratio of
18.75 / 75 = 0.25
This is the long sure way of solving it. The quick way is to realize that the voltage is the only thing that is going to change. 120 * 120 / (240 * 240) = 1/2*1/2 = 1/4 = 0.25
Answer:
The chance in distance is 25 knots
Explanation:
The distance between the two particles is given by:
(1)
Since A is traveling north and B is traveling east we can say that their displacement vector are perpendicular and therefore (1) transformed as:
(2)
Taking the differential with respect to time:
(3)
where
and
are the respective given velocities of the boats. To find
and
we make use of the given position for A,
, the Pythagoras theorem and the relation between distance and velocity for a movement with constant velocity.

with this time, we know can now calculate the distance at which B is:

and applying Pythagoras:

Now substituting all the values in (3) and solving for
we get:
