You are basically just adding, so combine like terms.
3x^2 + 5x^2 = 8x^2
6x - 2x = 4x
4 - 8 = -4
So the answer is D.
Answer:
your answer is below c:
Step-by-step explanation:
Problem One
Call the radius of the second can = r
Call the height of the second can = h
Then the radius of the first can = 1/3 r
The height of the first can = 3*h
A1 / A2 = (2*pi*(1/3r)*(3h)] / [2*pi * r * h]
Here's what will cancel. The twos on the right will cancel. The 3 and 1/3 will multiply to one. The 2 r's will cancel. The h's will cancel. Finally, the pis will cancel
Result A1 / A2 = 1/1
The labels will be shaped differently, but they will occupy the same area.
Problem Two
It seems like the writer of the problem put some lids on the new solid that were not implied by the question.
If I understand the problem correctly, looking at it from the top you are sweeping out a circle for the lid on top and bottom, plus the center core of the cylinder.
One lid would be pi r^2 = pi w^2 and so 2 of them would be 2 pi w^2
The region between the lids would be 2 pi r h for the surface area which is 2pi w h
Put the 2 regions together and you get
Area = 2 pi w^2 + 2 pi w h
Answer: Upper left corner <<<<< Answer
Answer:
(f + g)(x) = 3x^2 + 3x/2 - 9
Step-by-step explanation:
In order to find a composite function through addition, you simply add the two equations together.
f(x) + g(x)
x/2 - 3 + 3x^2 + x - 6
3x^2 + 3x/2 - 9
Answer:
Angle parking is more common than perpendicular parking.
Angle parking spots have half the blind spot as compared to perpendicular parking spaces
Step-by-step explanation:
Considering the available options, the true statement about angle parking is that" Angle parking is more common than perpendicular parking." Angle parking is mostly constructed and used for public parking. It is mostly used where the parking lots are quite busy such as motels or public garages.
Therefore, in this case, the answer is that "Angle parking is more common than perpendicular parking."
Also, "Angle parking spots have half the blind spot as compared to perpendicular parking spaces."