Answer:
240 Newtons
Explanatiohn:
f = m × a
f = 120 × 2
f = 240 Newtons
<h3>The force is 240 Newtons</h3>
Answer:
I think it is true I'm not saying it is but if you get another person who says its true say true
Explanation:
Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as
(2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find

And solving for
,

Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up from a height H without taking into consideration any kind of friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The object referred to in the question is thrown from a height H=0 and the maximum height is hm=77.5 m.
(a)
To find the initial speed we solve for vo:



(b)
The maximum time or the time taken by the object to reach its highest point is calculated as follows:



Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.