part 1
mass = ρ x V
mass = 1739 kg/m³ x 3.8 km³ = 6608.2 kg
PE (potential energy)= mgh
PE = 6608.2 kg x 9.81 x 403
PE = 2.61 x 10⁷ J
part 2
megaton of TNT (Mt) =4.2 x 10¹⁵ J
convert PE to Mt:
2.61 x 10⁷ J : 4.2 x 10¹⁵ J = 6.21 x 10⁻⁹ Mt
Answer:
(a) the electrical power generated for still summer day is 1013.032 W
(b)the electrical power generated for a breezy winter day is 1270.763 W
Explanation:
Given;
Area of panel = 2 m × 4 m, = 8m²
solar flux GS = 700 W/m²
absorptivity of the panel, αS = 0.83
efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp
panel emissivity , ε = 0.90
Apply energy balance equation to determine he electrical power generated;
transferred energy + generated energy = 0
(radiation + convection) + generated energy = 0
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%5Ceta%20%5Calpha_s%20G_s%20%3D%200)
![[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s](https://tex.z-dn.net/?f=%5B%5Calpha_sG_s-%5Cepsilon%20%5Calpha%28T_p%5E4-T_s%5E4%29%5D-h%28T_p-T_%5Cinfty%29%20-%20%280.553-0.001T_p%29%5Calpha_s%20G_s)
(a) the electrical power generated for still summer day

![[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_1%5E4-308%5E4%29%5D-10%28T_p_1-308%29%20-%20%280.553-0.001T_p_1%290.83%2A700%20%3D%200%5C%5C%5C%5C3798.94-5.103%2A10%5E%7B-8%7DT_p_1%5E4%20-%209.419T_p_1%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_1%5C%5C%5C%5CT_p_1%20%3D%20335.05%20%5C%20k)

(b)the electrical power generated for a breezy winter day

![[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \ \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k](https://tex.z-dn.net/?f=%5B0.83%2A700-0.9%2A5.67%2A10%5E%7B-8%7D%28T_p_2%5E4-258%5E4%29%5D-10%28T_p_2-258%29%20-%20%280.553-0.001T_p_2%290.83%2A700%20%3D%200%5C%5C%5C%5C8225.81-5.103%2A10%5E%7B-8%7DT_p_2%5E4%20-%2029.419T_p_2%20%3D%200%5C%5C%5C%5CApply%20%5C%20%20%5C%20iteration%20%5C%20method%20%5C%20to%20%5C%20solve%20%5C%20for%20%5C%20T_p_2%5C%5C%5C%5CT_p_2%20%3D%20279.6%20%5C%20k)

Answer:
Explanation:
1) Hypermetropia (better known as Farsighted- this is why nearby objects seem blurry for him)
2) In such instances, image are typically formed farther from the near point
3) Such defects are quite common so there are common procedures such as using convex lens which can restore the sight to normal.
Answer:
Explanation:
We need 2 different equations for this problem: first the velocity of sound equation, then the frequency of the sound equation.
The velocity of sound is found in:
v = 331.5 + .606T
We need to find that first in order to fill it into the frequency equation which is
where v is the velocity we will find the part a, f is frequency and lambda is the wavelength. Starting with the velocity of the sound:
v = 331.5 + .606(25) and
v = 331.5 + 15 and rounding correctly using the rules for sig fig when adding:
v = 347 m/s
Filling that into the frequency equation:
and
so

Answer:
The number of crates is 84580.
Explanation:
mass, m = 30 kg
height, h = 0.9 mm
Power, P = 0.5 hp = 0.5 x 746 W = 373 W
time, t = 1 minute = 60 s
Let the number of crates is n.
Power is given by the rate of doing work.
