O.99 m long .simple pendulum time period is 2s for second formula then use formula T=2pi.rt(lenght/gravity)
Explanation:
The first equation of motion in kinematics is given by :
.....(1)
u is initial speed
a is acceleration
v is final speed
t is time
Equation (1) is valid when the object is moving with constant acceleration. This equation gives relation between velocity and time.
' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
a) 32.58 m/s²
b) 161.84 m/s
Explanation:
Initial velocity = u = 0
Final velocity = v = 145 m/s
Time taken = t = 4.45 s
s = Displacement of dragster = 402 m
a = Acceleration


The final velocity is greater than the velocity used to find the average acceleration due to the gear changes. The first gear in a dragster has the most amount of toque which means the acceleration will be maximum. The final gears have less torque which means the acceleration is lower here. The final gears have less acceleration but can spin faster which makes the dragster able to reach higher speeds but slowly.