1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
7

Carter pushes a bag full of basketball jerseys across the gym floor. The bag weighs 21 newtons. If he pushes the bag 9 meters in

3 seconds, how much power does he use?
Physics
1 answer:
Virty [35]3 years ago
6 0
He uses 63 watts.
..............................

You might be interested in
Explain whether a tennis ball dropped from a high distance experiences an elastic collision or inelastic collision
hodyreva [135]
I need help on that too poop head
4 0
3 years ago
If I keep F constant in F=ma, what is the relationship between m and a?
Jobisdone [24]

Answer:

If F is a constant, we can take f = 1

f = m×a

ma = 1

therefore we can say that force is hence proportinal to the product of mass and acceleration.

6 0
2 years ago
Me izz in canada hehe Xd<br>just in 2 mins wow​<br><br>what is immunization?
Kruka [31]

Answer:

Immunization, or immunisation, is the process by which an individual's immune system becomes fortified against an infectious agent.

Explanation:

<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em>

<em>HAVE</em><em> </em><em>A</em><em> </em><em>NICE</em><em> </em><em>DAY</em><em> </em><em>:)</em><em> </em>

<em>XXITZFLIRTYQUEENXX</em><em> </em>

4 0
2 years ago
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s alo
Serggg [28]

Before the engines fail (0\le t\le3.00\,\rm s), the rocket's horizontal and vertical position in the air are

x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t^2

y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t^2

and its velocity vector has components

v_x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t

v_y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t

After t=3.00\,\rm s, its position is

x=273\,\rm m

y=362\,\rm m

and the rocket's velocity vector has horizontal and vertical components

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}

After the engine failure (t>3.00\,\rm s), the rocket is in freefall and its position is given by

x=273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)t

y=362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2

and its velocity vector's components are

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}-gt

where we take g=9.80\,\frac{\rm m}{\mathrm s^2}.

a. The maximum altitude occurs at the point during which v_y=0:

159\,\frac{\rm m}{\rm s}-gt=0\implies t=16.2\,\rm s

At this point, the rocket has an altitude of

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)(16.2\,\rm s)-\dfrac g2(16.2\,\rm s)^2=1650\,\rm m

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve y=0 for t, then add 3 seconds to this time:

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=34.6\,\rm s

So the rocket stays in the air for a total of 37.6\,\rm s.

c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute x for this time t:

273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)(34.6\,\rm s)=4410\,\rm m

5 0
3 years ago
A particle of charge 2.0 x 10^-8C experiences an upward force of magnitude 4.0 x10^-6 when it is placed in a particular point in
koban [17]

Answer:

a) The electric field at that point is 2.0\times 10^{2} newtons per coulomb.

b) The electric force is 2.0\times 10^{-6} newtons.

Explanation:

a) Let suppose that electric field is uniform, then the following electric field can be applied:

E = \frac{F_{e}}{q} (1)

Where:

E - Electric field, measured in newtons per coulomb.

F_{e} - Electric force, measured in newtons.

q - Electric charge, measured in coulombs.

If we know that F_{e} = 4.0\times 10^{-6}\,N and q = 2.0\times 10^{-8}\,C, then the electric field at that point is:

E = \frac{4.0\times 10^{-6}\,N}{2.0\times 10^{-8}\,C}

E = 2.0\times 10^{2}\,\frac{N}{C}

The electric field at that point is 2.0\times 10^{2} newtons per coulomb.

b) If we know that E = 2.0\times 10^{2}\,\frac{N}{C} and q = 1.0\times 10^{-8}\,C, then the electric force is:

F_{e} = E\cdot q

F_{e} = \left(2.0\times 10^{2}\,\frac{N}{C} \right)\cdot (1.0\times 10^{-8}\,C)

F_{e} = 2.0\times 10^{-6}\,N

The electric force is 2.0\times 10^{-6} newtons.

7 0
3 years ago
Other questions:
  • The elements least likely to form bonds are found in what group
    7·2 answers
  • Which statement is always true about objects which exert gravitational force on each other? A. They are a very large size. B. Th
    12·1 answer
  • A jet lands with a speed of 100 m/s and can accelerate uniformly at a rate of -5.0 m/s^2 as it comes to rest. What is the minimu
    5·1 answer
  • By which method does heat travel from the sun to Earth? A. Conduction B. Convection C. Evaporation D. Radiation
    6·2 answers
  • What objects do balanced forces act on?
    8·1 answer
  • Which of the followings are true about Vmax? A. The higher the [enzyme], the higher the Vmax B. Vmax is proportional to k2 C. Vm
    5·1 answer
  • With increasing depth, the temperature within earth
    8·1 answer
  • A pendulum is made by attaching a sphere to the end of a string of negligible mass and it oscillates when released from an angle
    15·1 answer
  • How many calories would you take in if you ate the whole box of crackers in one sitting ?
    14·1 answer
  • How does Newtons second law of motion relate to Track and field (running sport)?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!